Simulated Transfer Learning Through Deep Reinforcement Learning

نویسنده

  • William Doan
چکیده

This paper encapsulates the use reinforcement learning on raw images provided by a simulation to produce a partially trained network. Before training is continued, this partially trained network is fed different raw images that are more tightly coupled with a richer representation of the non-simulated environment. The use of transfer learning allows for the model to adjust to this richer representation of the environment and the network eventually exhibits desired behaviours in the real world. This is due to iteratively training the network on gradually more accurate simulated representations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying Options for Deep Reinforcement Learning

In this paper we combine one method for hierarchical reinforcement learning—the options framework—with deep Q-networks (DQNs) through the use of different “option heads” on the policy network, and a supervisory network for choosing between the different options. We utilise our setup to investigate the effects of architectural constraints in subtasks with positive and negative transfer, across a...

متن کامل

Reinforcement Learning With Deeping Learning in Pacman

A new method to approximate the true value in reinforcement learning by using deep neural network is proposed. We simulated the Pacman by using this method. Keywords—reinforcement learning; deep learning; Q-learning;

متن کامل

Towards Cognitive Exploration through Deep Reinforcement Learning for Mobile Robots

Exploration in an unknown environment is the core functionality for mobile robots. Learning-based exploration methods, including convolutional neural networks, provide excellent strategies without human-designed logic for the feature extraction [1]. But the conventional supervised learning algorithms cost lots of efforts on the labeling work of datasets inevitably. Scenes not included in the tr...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015